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Shortest Paths
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Shortest Paths
● Let G be a weighted graph.  The length (or weight) of a 

path, P, is the sum of the weights of the edges of P.
● The distance from a vertex v to a vertex u in G, denoted 

d(u,v) is the length of a minimum length path(also called 
shortest path) from v to u, if such a path exists.

● Given as input a weighted graph, G = (V,E), and a 
distinguished vertex, s, we want to find the shortest 
weighted path from s to every other vertex in G.  This is 
known as the single source shortest paths problem.

● One algorithm which can be used to compute the shortest 
path is Dijkstra’s algorithm.
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Dijkstra’s Algorithm
● Dijkstra’s algorithm is another example of a 

greedy algorithm
● It generates the shortest paths in stages.
● In each stage, a shortest path to a new 

destination vertex is generated
● The destination for the next shortest path is 

selected using the greedy criterion:
From the vertices to which a shortest path has 
not been generated, select one that results in a 
least path length.
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Dijkstra’s Algorithm
● We begin with the trivial path from the source 

vertex to itself.  This path has no edges and 
has a length of 0.

● In each stage of the greedy algorithm, the next 
shortest path is generated.  This next shortest 
path is the shortest possible one edge 
extension of an already generated shortest 
path. 
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Dijkstra’s Algorithm

v1
v2

v3

v6

v4
v5

v7

2

1

1 3

8 45

2

4

6

10

7

● Using the above graph we choose v1 as our starting vertex.
● We now make this node the reference node and mark it as known.
● We maintain a table of distances dv and vertices which cause a 

change to dv which we call pv



  6

Dijkstra’s Algorithm
Initial table configuration

vertex known dv pv

v1 No 0 0

v2 No - 0

v3 No - 0

v4 No - 0

v5 No - 0

v6 No - 0

v7 No - 0
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Dijkstra’s Algorithm
● We now calculate the distance from v1 to all of its adjacent nodes 

which are not known and update the table

vertex known dv pv

v1 Yes 0 0

v2 No 2 v1

v3 No 4 v1 

v4 No 1 v1 

v5 No - 0

v6 No - 0

v7 No - 0
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Dijkstra’s Algorithm
● We now mark v4 as known and recalculate the table

vertex known dv pv

v1 Yes 0 0

v2 No 2 v1

v3 No 3 v4 

v4 Yes 1 v1 

v5 No 3  v4

v6 No 9  v4

v7 No 5  v4
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Dijkstra’s Algorithm
● We now mark v2 as known and recalculate the table

vertex known dv pv

v1 Yes 0 0

v2 Yes 2 v1

v3 No 3 v4 

v4 Yes 1 v1 

v5 No 3 v4

v6 No 9 v4

v7 No 5 v4
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Dijkstra’s Algorithm
● We now mark v3 as known and recalculate the table

vertex known dv pv

v1 Yes 0 0

v2 Yes 2 v1

v3 Yes 3 v4 

v4 Yes 1 v1 

v5 No 3 v4

v6 No 8 v3

v7 No 5 v4
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Dijkstra’s Algorithm
● We now mark v5 as known and recalculate the table

vertex known dv pv

v1 Yes 0 0

v2 Yes 2 v1

v3 Yes 3 v4 

v4 Yes 1 v1 

v5 Yes 3 v4

v6 No 8 v3

v7 No 5 v4
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Dijkstra’s Algorithm
● We now mark v7 as known and recalculate the table

vertex known dv pv

v1 Yes 0 0

v2 Yes 2 v1

v3 Yes 3 v4 

v4 Yes 1 v1 

v5 Yes 3 v4

v6 No 6 v7

v7 Yes 5 v4
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Dijkstra’s Algorithm
● We now mark v6 as known

vertex known dv pv

v1 Yes 0 0

v2 Yes 2 v1

v3 Yes 3 v4 

v4 Yes 1 v1 

v5 Yes 3 v4

v6 Yes 6 v7

v7 Yes 5 v4
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
v1* v2*

v3*

v6

v4*
v5

v7

0 2

8

3 1 3

5

v1 * v2*

v6

v4* v5*

v7

2

3 1

8 5

3

0

v3*



  16

Dijkstra’s Algorithm
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